2202.06954v1 [cs.DC] 14 Feb 2022

arxXiv

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

LIDITE: a Full-Fledged and Featherweight Digital

Twin Framework
Enrico Russo, Gabriele Costa, Giacomo Longo, Alessandro Armando, and Alessio Merlo

Abstract—The rising of the Cyber-Physical System (CPS) and the Industry 4.0 paradigms demands the design and the
implementation of Digital Twin Frameworks (DTFs) that may support the quick build of reliable Digital Twins (DTs) for experimental and
testing purposes. Most of the current DTF proposals allow generating DTs at a good pace but affect generality, scalability, portability,
and completeness. As a consequence, current DTF are mostly domain-specific and hardly span several application domains (e.g., from
simple loT deployments to the modeling of complex critical infrastructures). Furthermore, the generated DTs often requires a high
amount of computational resource to run.

In this paper, we present LiDiTE, a novel DTF that overcomes the previous limitations by, on the one hand, supporting the building of
general-purpose DTs at a fine-grained level, but, on the other hand, with a reduced resource footprint w.r.t. the current state of the art.
We show the characteristics of the LiDIiTE by building the DT of a complex and real critical infrastructure (i.e., the Smart Poligeneration

Microgrid of the Savona Campus) and evaluating its resource consumption. The source code of LiDIiTE, as well as the experimental

dataset, is publicly available.

Index Terms—Digital Twin Framework, Digital Twin, Reference Model, Cyber-physical systems, Digital simulation

1 INTRODUCTION

In the last years, many authors have put forward different
definitions of Digital Twin (DT) [1], also in a relationship
with a wide range of applications [2]]. Although a termi-
nological consensus is still under development, most au-
thors agree that this concept revolves around creating a
virtual replica of a physical asset or system to support tests
and experiments (like, e.g., process optimization, predictive
maintenance, and what-if scenarios).

In the past, DTs have been usually built from scratch and
were strongly tied with the system they replicate. Nonethe-
less, as the popularity of DTs has grown in the last years -
mostly due to the rise of complex infrastructures, such as
those implementing Cyber-Physical Systems (CPS) or the
Industry 4.0 paradigm - the demand for rapid development
of complex, reliable and scalable DTs increased significantly.
Digital Twin frameworks (DTF) have been proposed and
implemented to deal with such requests. A DTF is a software
tool aimed at supporting the creation of DTs by automatiz-
ing some operations and providing pre-configured virtual
components.

Each DTF is based on one reference model, i.e., a general-
purpose logical architecture that abstracts some specific
parts of a real system. Consequently, the DTs built through
the DTF are instances of (part of) the reference model. A ref-
erence model should contain, at least, a number of elements
abstracting users and components of the real infrastructure
and rely on some technologies that allow replicating or

e E. Russo (Corresponding author), G.Longo, A. Armando, and A. Merlo
are with the Department of Informatics, Bioengineering, Robotics, and
Systems Engineering (DIBRIS), University of Genoa, Italy. Email:
{name.surname}@dibris.unige.it.

o G. Costa is with the Institute for Advanced Studies (IMT), Lucca, Italy.
Email: gabriele.costa@imtlucca.it.

mimicking the system’s behavior. To clarify, a very general
reference model is depicted in Figure

Here, the elements of the real infrastructures are orga-
nized into six layers, namely:

e Physical: physical processes controlled through sen-
sors and actuators.

o Field: programmable logic controllers (PLC) and
other devices controlling one or more physical ele-
ment.

e Network: the ICT connectivity layer.

e Business logic: rules driving the infrastructure be-
havior.

o Application: high-level programs and services.

e Human: people operating inside the infrastructure.

It is worth noticing that layers are not isolated, but rather
they overlap. The reason is that real systems, and thus their
DTs, usually include a complex interplay logic involving
different layers. For instance, think of an operator switching
her laptop on. Such a simple action has some effects at the
physical level (e.g., in terms of energy consumption) and at
the network level (e.g., in terms of generated traffic). This
interplay can be referred to as inter-layers interactions.

Concerning the replication of the system’s behaviors,
there exist three types of technologies, namely:

Emulation, i.e., technologies for the creation of virtual repli-
cas of ICT systems such as networks, operating systems,
and services. Technologies belonging to this category are,
for instance, hypervisors and Linux containers (LXC).
Simulation, i.e., technologies abstractly modeling the fea-
tures of interest of a real system while neglecting implemen-
tation aspects. Often, simulators are based on some math-
ematical specification of the behavior of the real system,
e.g., given in terms of differential equations or finite state
machines.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2
Human Application Business logic Network Field Physical
m H QOO =
— &
—
v o E— "
=-|m (32)
[Digital Twin Framework }

N
Q Emulation |w

N
Simulation |w

Passthrough |

Fig. 1: Digital twin framework reference model.

Pass-through, i.e., technologies relying on a real, physical
implementation that is directly plugged in the DT. This cat-
egory includes, for instance, hardware, remote services, and
human operators. Moreover, some technologies are needed
to support pass-through integration, e.g., think of virtual
private networks (VPN), remote desktop applications, and
remote terminals.

The reference model affects the complexity of the DTF
and the demand for computational resources of the corre-
sponding DTs. As a consequence, most of current DTFs rely
on simpler reference models (w.r.t. the model in Figure
which contain only a subset of layers and technologies (see
Section |5/ for more information). Such simplification is often
induced by the act of balancing between completeness of the
replica and its computational and development complexity.
We argue that an open research challenge is to build a DTF
that may go beyond the need of such a trade-off, and that
could be, at the same time:

1) General Purpose, ie., it should rely on a very
general reference model, thereby allowing to build
DTs of several kinds of physical assets (from simple
CPS scenarios to complex critical infrastructures).

2) Expressive, i.e., the DTF should allow to model all
layers, elements, and technologies of interest.

3) Extensible i.e., the DTF (and the corresponding ref-
erence model) should be enhanced by adding new
components.

4) Affordable, i.e., the DTF should rely as much as
possible on existing and off-the-shelf solutions.

5) Lightweight, the generated DTs must require a lim-
ited amount of computational resources to work
properly.

To this aim, in this paper, we present the design and
the implementation of a novel DTE, called LiDiTE, which
satisfies all previous properties. Besides the compliance
w.rt. the model in Figure the inspiring principle of
LiDiTE is to combine existing and new, ad-hoc technologies
to require minimal computational resources. Moreover, we
apply LiDiTe to implement a DT of a real, complex facility,
i.e., the Savona Polygeneration Microgrid (SPM) [3]. Our
experimental results show that, despite the low demand
for computational resources, the performance of our DT
implementation overlaps with that of the original SPM
infrastructure.

The rest of the paper is structured as follows. Section [2]
introduces our DTF model which we implement in Sec-
tion 3| In Section [4| we demonstrate our implementation
by applying it to the SPM use case. Finally, in Section [j|
we revise the related work and we conclude the paper in
Section [6

2 A REFERENCE MODEL FOR DIGITAL TWINS

In this section we will describe in details the reference model
of our DTE

2.1 Overview

In principle, building an accurate copy of a physical system
requires identifying and replicating all of its components
and functionalities and their interplay. Needless to say,
replicating every single aspect of the physical environment
is highly complex (likely infeasible) and, in general, out
of scope w.r.t. the purposes of a DT. Thus, we consider a
reference model based on the relationships highlighted in
Figure

The main idea behind this model is to prioritize interac-
tions that we consider more frequently relevant for common
usages of DTs. Most of these interactions are implemented
by leveraging some existing technologies (solid arrows).
Instead, other interactions (dashed arrows) have been im-
plemented ex nihilo due to both their relevance and the ab-
sence of specific solutions. In particular, we considered the
interactions of the physical environment with both human
agents and network infrastructures. Full details about these
aspects are provided in Section 3]

As previously stated, our reference model follows the
separation of concerns principle by identifying six structural
layers. Our layers mimic those defined in some standard
reference models, such as Purdue Enterprise Reference
Architecture (PERA) [4] or Reference Architectural Model
Industrie (RAMI) [5]. Nevertheless, our layer interaction
model is open, i.e., no specific constraints limit the possible
interactions between the elements of two layers. In other
words, a DTF relying on this model can also extend it with
further interactions, e.g., for representing a specific behavior
of interest. All the interactions that involve distinct layers
are called inter-layer interactions. For the time being, we
only focused on the inter-layer interactions highlighted in

Figure 2}

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

interacts . .
1,7 Business logic
interacts . . interacts .
Human Application Field Physical

hosts connects /:\ /?\
; Network P
) interacts : i
| mteracts 00 Tmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmosssoooomoooomo-ooes }

Fig. 2: LiDiTE architecture and inter-layers interactions.

In the following sections, we describe each layer and
the components/technologies they integrate. Finally, in Sec-
tion we detail the inter-layer interactions introduced
above.

2.2 Physical layer

This layer concerns the physical environment, phenomena,
and objects that somehow affect the infrastructure. For
instance, details such as weather conditions, sun position,
radiance, air pollution, etc., belong to this layer. Although, in
principle, myriads of physical elements might be involved
in the design of a DT, in practice, only a few of them typi-
cally play an active role. We assume that interaction through
proper sensors/actuators is viable for each physical state
of interest. Briefly, sensors read a value from the physical
environment (e.g., a temperature), while actuators modify it
(e.g., a heater). In other words, we assume sensors/actuators
to be the interface between the physical world and any other
element of a DT.

2.3 Field layer

The field layer includes devices that handle data from and
to the physical layer. A field device may collect data from
sensors, update its internal state, and trigger actuators. It
takes decisions based upon a custom program, i.e., its con-
trol logic. By leveraging direct connection with the network
layer, field device functionalities are also accessible from
other layers. For example, consider a field device controlling
a valve (physical layer) that regulates a pipe stream. A
remote, networked system can query the field device about
the current stream, depending on the valve status. Also,
the same system can request the reduce the stream, which
triggers the field device control logic. As a consequence of
the control logic computation, the field device may send the
closure command to the valve actuator.

Among the elements of the field layer, PLCs and IoT
devices are arguably the most common and representative.
The reason is that PLCs provide the core functionalities
of the legacy industrial automation, while IoT devices are
essential for implementing the Industry 4.0 paradigm.

2.4 Network layer

This layer includes all the elements contributing to the net-
work infrastructure. Each network infrastructure consists of

nodes, e.g., hosts, routers, firewalls, and the networks con-
necting them. A host node can be, for example, a server, a
personal computer, or a networked PLC. Networks provide
connectivity to nodes and enable their communication, e.g.,
through standard protocols. Typically, enterprise networks
include several segments, i.e., sub-networks, devoted to a
specific task, e.g., a laboratory network or class of nodes,
e.g., IoT devices. Network devices, e.g., routers or firewalls,
are the nodes enabling the overall internetworking.

2.5 Business logic layer

The business logic layer involves the processes driving the
infrastructure behavior. Industrial processes, optimization
heuristics, centralized and distributed control logic belong
to this layer. In general, the business logic of a complex
infrastructure may involve many processes. Each process
is executed by one or more agents, e.g., machines and
human beings. This work mainly focuses on the business
logic of industrial control systems (ICS) such as SCADA.
Such processes are typically in charge of ensuring that the
infrastructure behavior is optimal and safe. In particular, a
command and control application acquires and aggregates
real-time data from the field. Also, according to the specific
business logic, commands are sent back to field devices. This
task may also involve human actors using the SCADA HMI
application.

2.6 Application layer

This layer refers to the software elements, such as appli-
cations and operating systems. Resident applications may
significantly vary between different infrastructures. In gen-
eral, complex infrastructures host many applications that
coexist, e.g., think of the applications running in parallel on
a single personal computer. Some applications are related
to other layers. For instance, we already discussed above
how SCADA systems manage the business logic of the
infrastructure. Also, most applications of interest are the
source/destination of network traffic.

2.7 Human layer

The human layer includes people that exist inside the in-
frastructure. Human beings can operate on a real infras-
tructure in many (sometimes unexpected) ways. In general,
humans can interact with applications (e.g., by clicking on
a button), networks (e.g., by plugging a network cable),

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

business logic (e.g., by changing an optimization process),
field devices (e.g., by using the controls of a PLC) and
physical environment (e.g., by manually closing a valve).
Although all of these interactions may be relevant, we focus
on the application and physical layers here. The reason is
that in many cases, human agents are expected to interact
with the infrastructure through one of these two layers. For
instance, a SCADA operator sitting in a control room mainly
interacts with the SCADA HMI and, perhaps, some other
applications residing on her computer. Furthermore, people
moving inside the infrastructure are likely to induce some
physical effects, e.g., think of a motion sensor.

2.8

An inter-layer interaction occurs when a components be-
longing to different layers influence each other. Figure]|
shows the inter-layer interactions currently supported by
LiDiTE. Since multiple types exist, we use arrows to denote
the overall family of interactions relating two layers. We
remark that arrows are merely symbolic as actual interac-
tions are typically bidirectional. For instance, consider the
relationship between Human and Application. A human
operating through a user interface is involved in a bidi-
rectional interaction where she provides inputs and reads
outputs. Moreover, it is worth noticing that the effects of
an inter-layer interaction can propagate through multiple
layers, by following a relationships chain. For example, a
human agent interacting with a SCADA HMI (Application
layer), can influence the ICS business logic and result in
executing a command for the field devices acting on the
physical environment. In the next section, we provide the
implementation details about the currently supported inter-
layer interactions.

Inter-layer interactions

3 LIDITE

In this section we present our DTF called Lightweight Digital
Twin Environment (LiDiTE).

3.1

LiDiTE includes all the six layers discussed above, and, in
particular, they are implemented using different combina-
tions of the three technological pillars, i.e., emulation, simu-
lation, and passthrough. Passthrough is supported at every
layer to allow for plug-and-play integration with external
elements. Instead, simulation and emulation technologies
are used at different layers to implement specific features
of a DT. Full details about the implementation of both each
layer and inter-layer interactions are given below.

Overview

3.2 Physical layer

As we discussed in Section the Physical layer refers to
the physical elements that exist inside the infrastructure.
In LiDiTE, such physical assets can be either simulated or
directly integrated (passthrough). A passthrough configu-
ration allows the DT to interact with real world sensors
and actuators. For example, a PLC (Field layer) can read
the temperature from a real sensor. LiDiTE supports the
above connections by leveraging on the physical interfaces

4

provided by the host running the DT, e.g., serial or USB
ports.

Physical components simulation requires more atten-
tion. As a matter of fact, LiDiTE mainstream simulation
frameworks, e.g., Mathworks Simulink [6]], can be integrated
through software emulation (see Section . Nevertheless,
full-fledged simulators are typically not implemented to be
lightweightﬂ which would result in poor scalability. For this
reason, LiDiTE includes a lightweight simulation module.
The module supports three simulation methods which we
describe below.

Interpolation: This method simulates the behavior
of a system by interpolating a given dataset, e.g., historical
sequences. The dataset is a finite mapping between input
x; and output y; values. Given a new input z, this method
retrieves the closest elements z1,...,x; from the dataset
inputs and applies an interpolation function f to the corre-
sponding outputs ¥, . . ., Y. By default, LiDiTE applies the
linear interpolation function to the values y1,y2 such that
[z1,22] is the smallest interval in the dataset inputs with
x € [z1, 2. Alternative interpolation functions can also be
defined through the Script method (see below).

ODE simulation: Ordinary differential equations
(ODEs) are often used to describe dynamic systemsﬂ With
this method, a system is modeled through an ODE, given in
the canonical form

i(t) = A(t)z(t) + B(t)u(t)

where A(t) € R™*", B(t) € R™™*™, z(t) € R", and u(t) €
R™. Briefly, the system’s evolution at time ¢ is given by a
linear combination of its current state x(¢) and its current
input u(¢). In this context, matrices A and B express the
dependency of the next state w.r.t. the current state (A4) and
the current inputs (B, respectively). In LiDiTE, ODEs can be
specified through JSON files.

Scripting: The third simulation mechanism amounts
to executing arbitrary JavaScript code. In this way, one can
develop any simulation logic of interest, even when neither
historical data nor an ODE is available. Interestingly, this
also enables the integration of the simulator with external
resources, e.g., a remote service.

3.3 Field layer

In LiDiTE, field devices can be implemented via emulation
and passthrough. This is achieved by means of Eclipse
Ditto [8] and OpenPLC [9], respectively.

Eclipse Ditto: Ditto is a mainstream software for
creating DTs of field devices. Briefly, Ditto connects dif-
ferent physical devices, mirrors them, and enables a single
point of access through unified APIs and protocols. In the
above configuration, it allows LiDiTE to implement the
passthrough and integrate the DT with existing devices that
support standard IoT transport protocols [10], e.g., AMQP
or MQTT. Moreover, Ditto is used for implementing field
device emulation. In particular, Ditto permits the creation of
virtual replicas of field devices that connects with objects at

the physical layer (see[3.2).

1https: / /mathworks.com/company/newsletters/articles/improving-
simulation-performance-in-simulink.html
2We refer the interested reader to [7].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

OpenPLC: OpenPLC is an open-source solution for
PLC virtualization. In general, OpenPLC executes programs
that comply with the IEC 61131-3 standard [11], e.g., ladder
logic programs, as industrial PLCs do. For instance, a virtual
PLC can be configured to act as a Modbus [12] Slave or
as a DNP3 [13] outstation to emulate, e.g., a field device
managed by a remote SCADA server. Moreover, OpenPLC
can be used to implement passthrough. In particular, this
is enabled when a virtual PLC is configured to act as a
Modbus Master that works as a proxy for a real PLC being
the Modbus slave.

3.4 Network layer

In LiDiTE networks and network behavior are obtained by
means of emulation, simulation, and passthrough technolo-
gies. Their implementation relies on the Docker network-
ing system and software for creating OSI layer 2 Virtual
Private Network, namely OpenVPN [14]. The Docker net-
working system is configured with a plugin that leverages
the Software-Defined Networking (SDN) architecture and
the OpenFlow protocol [15]. In particular, the above plugin
manages an SDN infrastructure deployed with Faucet [16]
as the OpenFlow controller and Open vSwitch [17] for the
virtual switches connecting DT nodes.

By default, LiDiTE provides three network modes, i.e,
flat, routed, and nat. Flat networks provide connectivity
between connected nodes only and can be used to emu-
late the internal segments of, e.g., an enterprise network.
Routed and nat networks provision connected nodes with a
gateway through the host platform, thus enabling a direct
link between the nodes and the host. Moreover, by applying
Network Address Translation, nat networks masquerade
addresses of nodes with the host’s one. Typically, they are
used to implement management and host-through networks.
A management network allows DT owners to issue direct
messages to some nodes, e.g., for running commands and
monitoring purposes. Although a management network is
not mandatory, it is actually needed in several cases, e.g.,
to trigger critical events, such as a black-out or a system
failure. Instead, host-through networks allow implementing
segments accessing the host resources, e.g., its services or
hardware. Host-through networks are a fundamental build-
ing block for network-based passthrough integration. As
a matter of fact, they allow DT nodes to address external
resources, e.g., remote, Internet-connected systems, by lever-
aging the host connectivity.

LiDiTE also supports network and node passthrough
integration, i.e., any external networks or devices can be
directly connected to any DT network segment. Network
passthrough is obtained by configuring the Faucet service
to manage external, physical, or virtual switches supporting
the OpenFlow protocol. Instead, node passthrough can be
implemented using OpenVPN. The configuration consists
of a one-to-one mapping between the OpenVPN server net-
work interfaces and the passthrough-enabled DT networks.

Beyond network connectivity, network devices must
be appropriately configured to implement internetwork-
ing. The above devices are emulated through multihomed
containers and leveraging Docker images for running their
operating system. As we detail in Section for emulated

Industrial
enterprise

e SCADA server

Enterprise
e Clients
« Workstations
Historical @

Fig. 3: The network chassis layout.

Industrial

+ PLC and RTU

o Field devices

o Legacy devices
DMZ

web servers

mail servers
DNS servers

applications, LiDiTE can use containers for Linux based
operating systems, e.g., OpenWrt [18], or virtual machines
for the devices that are provided in the form of virtual
appliances, e.g., OPNsense [19] or the virtualized form of
firewalls provided by major vendors.

Finally, standard and frequently used networks can be
defined and reused in LiDiTE. A reusable network topology
goes under the name of Network Chassis. For instance, The
network chassis of Figure 3| follows a recurrent ICS network
architecture featuring the segmentation model proposed
in the ISA/IEC 62443 standard [20]. Briefly, it consists of
three firewalls enforcing four security zones assigned to
(i) publicly exposed IT services, i.e., DMZ, (ii) internal
IT services, i.e., Enterprise, (i) services for the industrial
automation, i.e., Industrial enterprise, and (iv) field devices,
i.e., Industrial. Our network chassis also supports connectiv-
ity with the real or a simulated Internet through a fourth
emulated router working as an Internet Service Provider
(ISP). Finally, the support of an emulated DNS server and
dynamic routing protocols allow DT designers to adapt a
predefined network chassis to represent the domain names
and public and private addressing.

3.5 Application layer

LiDiTE hosts applications by relying on the passthrough
or emulation technologies. As previously detailed in Sec-
tion network passthrough allows for plugging a
real host into a DT network which, clearly, also entails
passthrough integration of all the applications residing
there. Nevertheless, a single application passthrough might
be necessary, e.g., to deploy an existing service inside a
context relevant for a specific DT. For instance, in LiDiTE
this is achieved by using reverse proxies. For the time be-
ing, LiDiTE supports reverse proxy by using NGINX [21].
Briefly, NGINX embeds a reverse proxy module that can be
configured for both TCP and UDP traffic. For example, we
can mount the NGINX module on a DT host and configure
it to mirror an existing web portal.

For the emulation, LiDiTE resorts to Linux Containers
and, in particular, to Docker. The main reason is that, since
Linux containers only carry small runtime environments,
the scale well and better match the lightweight requirements
of LiDiTE. Still, other emulators, e.g.,, VM hypervisors,
are supported. For instance, LiDiTE integrates KVM [22]
through a wrapper container. This solution allows the DT
to emulate non-Linux applications, e.g., Microsoft Windows
ones.

In addition, by means of Docker Compose [23], LiDiTE
can integrate out-of-the-box applications consisting of sev-
eral modules. For instance, Eclipse Ditto (see above) is

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Human Business logic
APT/GUI APL
: o Docker/OpenVPN
Ditto: Application Network
Docker .- - Docker
OpenVPN
. , B Ditto ,
*-> Physical Field

Fig. 4: Inter-layer interactions implemented in LiDiTE.

imported by LiDiTE in a way that its dependencies, e.g.,
Java runtime or the Mongo database, are already satisfied
and pre-configured.

3.6 Business logic and Human layers

Business Process Modelling and Notation (BPMN) [24] is the
default process definition language supported by LiDiTE.
Being widely adopted, BPMN is supported by many tools,
and LiDiTE relies on the Camunda platform [25], ie., a
mainstream, open-source software for designing and exe-
cuting BPMN processes. Briefly, in Camunda, each task is
associated with a corresponding script, e.g., implemented
in Groovy, which is launched whenever the task node is
visited. In LiDiTE an instance of Camunda is available at
the Application layer for enabling business logic execution
through emulation. Nevertheless, due to their expressive
power, we also exploit BPMN processes for simulating
human behavior. For instance, in this way, Camunda can
be instructed to simulate users who browse the web, e.g.,
by visiting URLs from a predefined list. This is achieved by
coding REST API invocations as part of the task scripts.

Finally, business logic and human agents integration can
happen via passthrough. In particular, human agents can
operate through the DT interaction points, e.g., applications
and physical elements. Also, external business logic applica-
tions can be connected by means of application passthrough
technologies (see above).

3.7

In this section, we provide the reader with the implemen-
tation details about the inter-layer interactions currently
supported in LiDiTE. Figure [schematically depicts them.
We first observe that two families of interactions exist, i.e.,
those inherited from the specific technologies adopted in
LiDiTE (solid arrows) and those developed on purpose
(dashed arrows).

Schematically, the inherited interactions are the follow-
ing. Simulated humans trigger APIs via Camunda scripts,
while real humans directly use the graphical user inter-
faces of the applications. Similar to simulated humans, the
business logic processes only operate through APIs. Emu-
lated applications use Docker interfaces to interact with the
network hosting them, while passthrough applications can
resort to both open Docker and OpenVPN. The same goes

Inter-layer interactions

6

with emulated and passthrough field devices connected to
the network infrastructure. Finally, Eclipse Ditto APIs are
used for the communications between field devices and both
emulated and passthrough physical elements.

The current version of LiDiTE includes two further inter-
layer interaction mechanisms that we implemented as fol-
lows. To enable interactions between simulated humans and
simulated physical elements, Ditto APIs are made callable
from Camunda processes. In this way, simulated humans
can manipulate the state of simulated physical systems in
the same way as field devices. Instead, Docker APIs enable,
among others, the listing, creation, power on/off, and scale
of containers simulating network nodes. Again, Camunda
can interact with such APIs to implement the effects of
emulated network nodes on simulated physical elements,
e.g., the increase of the power consumption, and vice versa,
e.g., the impact of a power outage.

4 LIDITE DEmO

We provide a demonstration of LiDiTE applied to a real use
case. LiDiTE is available as a free, open source software on
GitHub ﬂ All the material needed to replicate the use case
DT as well as the experiments described in Section [4.3| are
also available in the GitHub repository.

4.1 Use Case

The Smart Polygeneration Microgrid is a power generation
plant deployed within the Savona campus of the University
of Genoa. The campus hosts a number of facilities for
university students and staff, including a gym and a tennis
court. Classrooms, laboratories, and offices are located in-
side five buildings. Moreover, a sixth building contains the
library and some study rooms. In general, the SPM builds
on top of three distinct, yet interconnected, infrastructures,
i.e., the university campus, the ICT network, and the energy
system (see Figure 5). These infrastructures host several
subsystems. Below, we provide a detailed description of
those that are relevant to this paper.

4.1.1 Power plant

The microgrid structure is that of a power ring connecting
all the subsystems. The main power generation subsystem
amounts to a solar plant installed on the roof of building
B. Solar panels can output up to 80.64 kW [26], depending
on environmental factors, such as season, daytime, and
weather conditions. If needed, a Capstone® C65 [27, §4.1]
gas turbine can be activated to integrate the energy produc-
tion. The turbine is a co-generative system that combines
combustion and heat, producing 65 kW. Furthermore, en-
ergy storage is recharged to accumulate energy surplus and
discharged to cover the energy deficit. The overall energy
demand amounts to the sum of demands of each building,
which depend on the local energy consumption. Finally, the
SPM drains from the public energy distribution network in
case of excess demand.

Shttps:/ / github.com /CSecLab/LiDiTE/

https://github.com/CSecLab/LiDiTE/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

(icograms.com)

Fig. 5: A schematic representation of the SPM infrastruc-
tures.

4.1.2 On field controllers

Each subsystem is under the control of a field device.
Field devices are connected to the central SCADA system
(see Section [£.1.5). Field controllers feed the SCADA server
with data from their own subsystem, e.g., the currently
produced power, and receive commands to be applied, e.g.,
to switch on and off the subsystem. Communications are im-
plemented in two ways. Buildings cabinets are directly con-
nected with the SCADA server through Modbus/TCP [12].
Instead, storage, turbine, and solar controllers interact us-
ing the Publish/Subscribe pattern. The connection occurs
through a message broker server which handles the message
queue between the field devices and the SCADA server. The
SCADA server relies on REST APIs to query the broker.

4.1.3 Campus network

The campus ICT infrastructure consists of a segmented
enterprise network (see Figure |6). The four main segments
are called client, DMZ, control, and field. The client network
hosts personal devices belonging to staff and students, and
it is accessible throughout the entire campus. Concerning
the campus servers, the DMZ network is located inside the
server room, and it is meant to expose remotely accessi-
ble, public services. The control network hosts servers and
workstations dedicated to the smart grid management. The
field network hosts the field devices. Finally, the campus
is connected to the Internet through an Internet Service
Provider (ISP) router. The overall segmentation is enabled

7
message SCADA
client 1 clientk broker SEIVEr workstation
! o El:I
client control
perimeter enterprise industrial
firewall firewall firewall
> v
storage @ turbme 1 x
Internet - Elﬂ
router - .
DMZ field
El EI El L LI L LI L] L_JLIL
= = = s :| HICKRI R I I PO I - P B
vpn dns WWW building A building E library solar

Fig. 6: ICT network scheme

by three firewalls that allow each network to operate under
distinct security policies. For example, a policy enforced on
the field firewall denies field devices to browse the Internet
and only allows incoming connections from the control
network.

4.1.4 Energy Management System

The Energy Management System (EMS) is a centralized,
automatic control process that handles the SPM power
generation logic. The goal of the EMS is to employ the power
generation subsystems to maximize the SPM efficiency in
terms of costs and ecological footprint. The EMS monitors
the internal demand and the overall power generation to
this aim. If possible, solar energy generation is privileged
since it comes at almost no cost and has negligible effects
on the environment. When solar production exceeds the
demand, the energy surplus is redirected to energy storage.
To do this, the EMS activates the charge mode of the energy
storage. If the energy storage cannot switch to charge mode,
e.g., because the full charge has been reached, the surplus
is dissipated. When the solar production is insufficient, the
EMS attempts to cover the energy deficit by executing the
following steps.

1. The energy storage is set to discharge mode.

2. If 1. is unfeasible, the gas turbine is started.

3. If 2. is unfeasible or uneconomical, energy is bought
from the public supplier.

4.1.5 SCADA system

The SPM is under the scope of a SCADA system. The
SCADA system acquires data from the peripheral subsys-
tems and allows operators to monitor the SPM. Further-
more, operators can manually instruct the SPM by mod-
ifying the state of the system. The SCADA system runs
on the SCADA server (see above), and operators access its
interface through a dedicated workstation inside the SPM
control room.

4.1.6 Campus staff and students

Mainly two categories of people move inside the campus,
i.e., staff members and students. Staff members include SPM

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

operators and teaching and administrative personnel. Stu-
dents and staff members can connect to the SPM enterprise
network with their client devices, e.g., laptops, mobile, and
wearable devices. The number of people inside the campus
varies depending on some factors such as the daytime and
the period of the year.

4.2

Our DT implementation includes the elements of SPM that
we detailed in the previous section. In particular, we have
coupled each of the above elements to a layer of our ref-
erence model and used the emulation and simulation tech-
nologies supported by LiDiTE for creating their instance in
the DT. For each layer, we discuss below the implementation
details using some representative elements as examples.

Implementation

4.2.1 Physical layer

At this layer, we require to model the processes related to
the solar panel subsystem, the gas turbine, and the energy
storage. As detailed in Section we can simulate them
using the lightweight module included in LiDiTE. In the fol-
lowing examples, we detail the methods and configurations
we used to model their behaviors.

Example 1. Consider the solar panel subsystem of the SPM
use case. Historical data is often used for predicting the
expected performance, i.e., the generated power. Since we
have no data about the production of similar plants, we de-
rive it from historical data about solar radiation. We obtain
this through an ancillary sun simulator, discussed in detail
in Example (3| Given the current time = (date and daytime),
the sun simulator returns a radiation value y (in W/m?).
Then, we compute f,(y) = ySE where S is the panel area
(in m?) and E is the panel efficiency (in %). The terms
appearing in f, are based on the technical specifications of
the system. In particular, the full specifications of the solar
plant is provided in [26]; this includes the overall surface S
and the solar modules specificationsﬂ from which F is taken.
Below we give the JSON syntax for the simulator described
above.

Briefly, the code below defines a device called FDT:solar-
panel-1 possessing a property power which is calculated
by invoking the indicated getSolarSurfacelnterpolant function
with the watt-per-msq value obtained from the latest reported
state of another device called FDT:sun-simulator.

{"name": "FDT:solar-panel-1", "features": {
"solar-panel": {

"components": [{ "sources": [{
"thingId":"FDT:sun-simulator",
"feature":"environment",
"pointer":"/watt-per-msq"

}1, "callbackName":"getSolarSurfacelInterpolant",
"name" :"power"}1}}}

Finally, the JavaScript callback function implementing f,
is as follows.

function getSolarSurfaceInterpolant (y, S, E) {

return (y) => y » S » E; }

4https:/ /raw.githubusercontent.com /CSecLab/LiDiTe/master/ config/
scriptablesensor/energy-store-1/Sistem_Sonick_ST5_23_620V.pdf

8

O

Example 2. Consider the energy storage subsystem. Fol-
lowing the technical specifications of the manufacturelﬂ we
model it as follows.

i(t) = [0]z(t) + [0.126, —0.14]u(t)

In this case, the current state of the system x(¢) amounts
to a single value, i.e., the storage charge level. The charge
level variation only depends on the inputs, i.e., A(t) = [0].
In particular, two inputs are given, namely recharge and
discharge. The JSON specification for the previous ODE is
the following.

{"name": "FDT:energy-store-1", "features": {
"battery-pack": { "type": "systemSimulator",
"system": {"A": [[0]], "B": [[0.12667, -0.141]1}}}}

Also, the gas turbine is modeled with an ODE as fol-
lows.

5(t) = ~0.1

0.2

—0.3076 0

u(t)
0.0008 —0.2

4750 29993

} z(t) [
1 45

Here, x(t) is made up of two components, i.e., the current
number of revolutions per minute and the exhaust gas
temperature in Celsius degrees. The system state is influ-
enced by three inputs, i.e., startup valve enabled (ranging
in {0,1}), ignition valve enabled (ranging in {0,1}), and
outside air temperature (ranging in [—7, 39] [28]]). The coef-
ficients of A(t) and B(t) have been calculated to match the
manufacturer-provided specifications about turbine perfor-
mance (in the 50%-100% rpm range). O

Example 3. To simulate the sun radiance, we leverage
the European Commission’s Photovoltaic Geographical In-
formation System (PVGIS) [29]. The service exposes APIs
retrieving the solar radiance component for specific coor-
dinates, already corrected according to specified rise and
azimuth, at a given date. A minimal JavaScript implemen-
tation of the simulator is given below.

8.18
2016

const latitude = 44.18, longitude =
const azimuth = -30, rise = 15, year =
const data = createSolarDataTable ()
function createSolarDataTable () {
let response = RESTUtil.doGet ('https://...")
// parsing and cleaning PVGIS API response
return cleaned_up_data_table }
function getRadianceAtTime (z) {
let record = min|, g4 data.d s.t.
return record.radiance }
function getCurrentRadiance () {
let y = getRadianceAtTime (Date.now())
return y }

d € data.keys ()

Briefly, the code above declares constants for lati-
tude, longitude, azimuth, and rise of the solar plant. As
previously discussed, these values are taken from [26].
Also, the script declares the reference year for data to
be retrieved’| These values are used by the function
createSolarDataTable, which invokes the REST APIs of
PVGIS and generates a table, called data, mapping times-
tamps of the days of the year to the radiance recorded at that

5https: / /raw.githubusercontent.com/CSecLab /LiDiTe/master/config/
scriptablesensor/solar-panel-1/ferrania_solis.pdf
©At the time of writing, the most recent records available are from 2016.

https://raw.githubusercontent.com/CSecLab/LiDiTe/master/config/scriptablesensor/energy-store-1/Sistem_Sonick_ST5_23_620V.pdf
https://raw.githubusercontent.com/CSecLab/LiDiTe/master/config/scriptablesensor/energy-store-1/Sistem_Sonick_ST5_23_620V.pdf
https://raw.githubusercontent.com/CSecLab/LiDiTe/master/config/scriptablesensor/solar-panel-1/ferrania_solis.pdf
https://raw.githubusercontent.com/CSecLab/LiDiTe/master/config/scriptablesensor/solar-panel-1/ferrania_solis.pdf

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

time (in 2016). Then, the function getRadianceAtTime,
given a timestamp x, searches data for the record which
is temporally closer to x, and returns its radiance. Finally,
when invoked, the function getCurrentRadiance com-
putes the radiance for the current time. This operation gen-
erates the value y used by the simulator of Example O

4.2.2 Field layer

Some representative elements that we emulate at the Field
layer are the power cabinets and the field controllers. In
Example 4} we start detailing the implementation of power
cabinets.

Example 4. The power cabinets of each building consist
of two components, (i) a smart switch controlled via Mod-
Bus/TCP, and (i%) a virtual PLC handling the activation of
the overcurrent protection.

The smart switch of a building measures the power
load by summing constant and variable loads. The former
is the physiological energy consumption of the building,
e.g., for running the video surveillance system. The latter
is the load that varies with some environmental condi-
tions. In particular, we consider occupants” equipment to be
the main source of variable load. Device are implemented
through docker containers, and each container is labeled
with its nominal energy consumption value, i.e., a meta-
data property called 1oad. Thus, variable load calculation
amounts to the sum of the nominal energy consumption
of all the containers associated with a certain building.
The association between a building and a container is also
specified as a metadata property, namely cabinet. The
virtual switch exposes ModBus/TCP (read-only) registers
for the current and maximum power consumption and coils
for the master and trip commands. Also, the virtual switch
described above is registered as ModBus/TCP slave of an
OpenPLC instance. In particular, its registers are mapped to
input (I) addresses 100 and 101, while the trip switch coil
is mapped to output (Q) address 100[] The PLC runs the
following structured text program, which implements the
current protection mechanism.

PROGRAM trip IF MAXCONS > 0 THEN

VAR TRIPSW:= CONS > MAXCONS;
CONS AT %IW100: WORD; ELSE

MAXCONS AT $IW10l: WORD; TRIPSW:= O;

TRIPSW AT %QX100: BOOL; END_TIF

END_VAR END_PROGRAM

The code given above compares the current power con-
sumption (MAXCONS) with the rated one (CONS), only if
the reported max consumption is a positive value. If this
happens, the PLC sets the trip bit coil (TRIPSW) of the
virtual switch to turn it off. Such power trip is implemented
by instructing the Docker API to stop the attached client
containers. O

For what concerns field device integration, we rely on
Ditto. Ditto acts as a centralized data aggregator for the
devices it manages. It provides a message broker that works
by (i) holding the latest reported state of each device and
(#7) forwarding messages, e.g., about issued commands.

7The master switch is not handled by the PLC, but is directly under the
control of the SCADA system.

9

In Example [5] we describe how Ditto can emulate a field
controller starting with the solar panel subsystem.

Example 5. Consider again the solar panel simulation
described in Example I} We implement its field controller
by means of the following Ditto HTTP endpoint.

api/2/things/.../features/panel/properties/power

The solar panel simulator detailed in Section submits
(method PUT) the current sensor values to Ditto every 10
seconds. Then, the latest value is periodically retrieved by
the SCADA system that queries (method GET) the Ditto
HTTP endpoint given above. O

4.2.3 Network layer

We use the predefined network chassis layout (see Sec-
tion to implement the ICT network of the SPM (see
Figure @ Briefly, chassis zones Industrial, Industrial /enter-
prise, Enterprise, and DMZ implement the field, control,
client, and DMZ networks, respectively. A connection to
the Internet is created by means of a virtual router playing
the role of the ISP infrastructure. The ISP router is then
attached to a host-through network which directly accesses
the underlying host network and, thus, the Internet.

4.2.4 Business logic layer

The main process contributing to the business logic of the
SPM is the EMS (see Section [£.1.4). We re-implement the
EMS of [30] with setpoint 0, i.e., our EMS aims at minimizing
the amount of energy demanded to the utility network. The
BPMN process for the EMS is given in Figure[7] The overall
process consists of five sub-processes, i.e., EMS, Storage
Charge, Storage Discharge, Turbine Start and Turbine Stop. At
regular intervals, EMS is activated by a timer event. Initially,
EMS queries the SCADA system for current solar energy
generation and campus consumption. These values are then
compared to establish whether there is either a deficit or a
surplus of energy. In case of surplus, an event triggers both
the Storage Charge and the Turbine Stop processes. Instead,
energy deficit results in an event activating the Storage Dis-
charge process. The Storage Charge process initially checks
charging viability, i.e., whether the current level of charge is
below a certain efficiency threshold, currently set to 90%. If
this is the case, the process stops the discharge mode and
starts charging the storage. This enforces mutual exclusion
between charge and discharge modesﬂ When charging is
not possible, the charge mode is disabled. Symmetrically,
Storage Discharge checks whether discharge mode is possi-
ble (with efficiency threshold set to 10%). If so, the charge
is stopped and discharge starts. Otherwise, discharge is
stopped and an event is fired for triggering Turbine Start.
Turbine Start checks the activation conditions according to
the system state and decides if switching the gas turbine
on is convenient, i.e., if the current deficit is more than the
turbine efficiency threshold of 65 kW. Depending on this
check, either the start or stop command is issued. Finally,
the Turbine Stop process simply stops the turbine.

Each task appearing in the processes discussed above is
implemented in Groovy. Below we show the implementa-
tion of Get solar generation & consumption values.

8The actual storage system also supports them in parallel.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

10

EMS

Storage Turbine

Discharge

Calculate energy
surplus/deficit

J

O—

surplus

Get solar generation
& consumption
values

turbine is not
convenient

turbine is
convenient

Store surplus

Offset deficit

deficit

’ [Start turbine] [Stop turbine]

Fig. 7: Business process of the Energy Management System

def http Connectors.getConnector (HttpConnector.ID)
def response http.createRequest () .get ()
.url (scadaAPIURL + ’/datapoint/getAll’)

.execute ()

def object = new JsonSlurper () .parseText (response)
def points = [:]
object.each {

def (pointName, pointXid) = [it.name, it.xid]

points[pointName]
return points

pointXid }

Briefly, the code above retrieves all the datapoints by means
of a SCADA API and stores them in the response variable.
Such a variable is then parsed from the JSON format and
converted to a key-value map, called points, which is
eventually returned for the following task.

4.2.5 Application layer

One of the core applications hosted on the DT is the SPM
SCADA system. We use Scada-LTS [31] to implement it.
Briefly, Scada-LTS consists of a Java servlet application
running on top of an Apache Tomcat server. Moreover,
Scada-LTS interacts with an external MariaDB database for
storing and retrieving collected data and general system
information. Scada-LTS resides in a docker container which
is built out of the project source code via a Dockerfile.
Instead, an official, containerized version of MariaDB is
directly downloaded from the Docker Hub repository. The
HMI of Scada-LTS is depicted in Figure g}

4.2.6 Human layer

At this layer we model the SPM turnout in terms of the
behavior of students and staff members. The total number T'
of people accessing the university campus is available online
(see [32] for staff, and [33] for students). Following [34, §3],
we assume that each person has two main effects, i.e., con-
necting a client to the campus network and, consequently,
increasing the power consumption of a building. We model
the turnout by means of a template container which clusters
C individuals. Briefly, small values of C increase the simula-
tion granularity, while larger values improves the scalability.
Thus, the buildings power consumption E is computed as

T/C
E=B+)» C-P
i=0
where B is the base building consumption, i.e., the constant

electrical load of the building equipment (e.g., safety lights),
and P; is the individual power consumption following a

SCaDd

CL L B PRIk ey a0

saxBirEd

L[Sy 3
Click "CTRL+SHIFT+F" to exit Full Screen Mode

Graphic views @

:

Zero

pzEnf

il

;ng

Gearbox engaged (@)
Startup valve ‘

Solar panel 1

Fig. 8: SPM operator interface implemented with Scada-LTS.

START

STOP.

normal distribution with mean p; and standard deviation
0;, in symbols P; ~ N(u;, 0;). The actual values used in our
simulations are C = 10, B = 1.5kW, and Vi.u; = 25 and
01225.

4.3 Execution and evaluation

Our execution environment runs on a Debian GNU/Linux,
version 11, installed on a virtual machine hosted by
VMWare ESXi 7.0U2 and configured with 16 Intel Xeon
Gold 6252N at 2.3GHz, 64 GB of RAM, and 250GB of
storage. The running scenario includes 40 Docker containers
implementing the DT elements discussed above. Further-
more, depending on the occupancy of the building over
time, 0 to 120 containers, i.e., client machines, spawn and
connect to the enterprise network. Finally, the workstation
connected to the industrial/enterprise network runs a Mi-
crosoft Windows 10 OS on top of a containerized hypervisor
(see Section[3.5) configured with 4 CPUs, 8 GB of RAM, and
60 GB of (dynamically allocated) disk.

We used our DT for simulating one week of SPM activity.
During the execution, we collected time series of allocated
system resources, e.g., CPU and memory, as well as SCADA

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

0

22| M TLH“:

QON\ r

40 |- .
20 | —

Dayl Day2 Day3 Day4 Day5 Day6 Day7”

o

w
S
[

10 : ’“WI‘—'

Disk (GB) RAM (GB) CPU (%)

=]

Fig. 9: Computational load for the experiment.

data points. The entire dataset is publicly available [35] and
consists of 0.2B samples from the resource monitor and 8.4M
SCADA samples. Below we discuss some relevant facts for
evaluating our simulation.

Figure[9|shows the CPU, memory, and disk usage during
the 7 days of execution. The average CPU load was 10%
of the overall CPU capacity and never exceeded 31%. The
simulation memory usage never exceeded 24GB. The disk
usage increased almost constantly by 345MB/h and the
entire experiment generated 58 GB of data.

Information about the computational resources needed
for the simulation permit to estimate the affordability of our
DT. In particular, we considered the cost of hosting a Linux
VM with sufficient computational resources in mainstream
cloud providers. Then, we evaluated the considered VM
profile as 4 CPUs, 32GB RAM, and 100GB disk. The price{]
are (i) 47.61 $ on Google Cloud Platform, (ii) 46.1 $ on
Amazon Web Services, and (iii) 57,93 $ on Microsoft Azure.

Figure [10 shows the generated field power (above) and
the total power load (below) during the DT simulation in
comparison with one day of the same measures taken from
the SPM. Over the 7 days of simulation, the weather con-
ditions influenced the actual generation of the solar panels.
For instance, Day 6 and Day 7 show the performance during
a cloudy day and a sunny one, respectively. Although a di-
rect comparison is not possible, the SPM record shows good
correspondence with the profile of a sunny day. In terms
of power load, values shows the performance during both
working days and the weekend (Day 6 and Day 7). Again,
there is a remarkable similarity between our simulation the
actual load of the SPM during a working day. Although
more systematic measurements are needed to assess the
accuracy of our DT, these comparisons already confirm the
adequacy of our approach. We plan to carry out further
experiments as future work.

Discussion: In terms of the requirements introduced
in Section [1} we put forward the following statements.
General Purpose. LiDiTE allows building heterogeneous
and complex scenarios as in the SPM case study.

Expressive. LiDiTE allows to implement assets, function-
alities, and interactions related to all the six layers of the
reference model.

9Last checked on February 16, 2022

11

Extensible. LiDiTE integrates several de facto standards.
Furthermore, it is the only DTF supporting the three techno-
logical pillars (i.e., simulation, emulation and passthrough).

Affordable. Our DTF prioritize affordable technologies and
permits designers to rationally allocate the computational
resources needed for the simulation.

Lightweight. By privileging lightweight emulation and sim-
ulation methods, LiDiTE significantly reduces the computa-
tional costs of simulations.

For all the reasons discussed above, we believe that
LiDiTe can provide an open-source platform for fostering
the development of DTs in many different contexts.

5 RELATED WORK

Many authors have put forward definitions of DT in the last
years (see [36] for a survey). Most of them focus on some
specific aspects or technologies. Although these proposals
deal with some crucial aspects of real infrastructures, they
do not introduce a general definition of DTF as we do in this
paper. Thus, here we focus on previous works proposing a
general definition of DTF. Table[I]compares LiDiTE with the
other DTF proposals. There we report the supported levels
and, for each of them, we indicate the enabling technologies
among emulation, simulation, and passthrough.

The Electric Power and Intelligent Control twin
(EPICTWIN) [37] is a DTF for staging security training and
research activities in a replica of a smart grid. Interestingly,
the DT model of EPICTWIN includes all the layers identified
in this paper. At the core of EPICTWIN stands Node-
RED [38], i.e., a visual programming tool wiring together
hardware devices and software services. Instances of Node-
RED are executed on Linux virtual machine to emulate
the behavior of the plant at multiple layers. For instance,
Node-RED modules exist for running both the Field devices
and the SCADA system, e.g., including an HMI application
and the centralized control logic. Like LiDiTE, network
layer emulation is obtained by means of SDN. Instead, the
Physical layer relies on passthrough for connecting external
devices or third-party simulation software, e.g., Mathworks
Simulink [6]]. Finally, EPICTWIN includes a module for the
automatic execution of attack scripts. Although partially,
such a module simulates the activity of (hostile) human
beings.

Eckhart et al. present CPS Twinning [39], a DTF aiming
at mirroring cyber-physical systems (CPS). Their proposal
is inspired by MiniCPS [40], i.e, a framework for real-time
CPS simulation. They support both the integration with
actuators/sensors and their simulation through historical
values. Field devices mainly consist of emulated PLCs, exe-
cuting standard ladder logic programs, but also passthrough
of actual PLCs is supported. The network layer emula-
tion is implemented by Mininet [41], which also supports
passthrough. Finally, at the Application layer, CPS Twinning
emulates an HMI with a command-line interface used to
issue commands to PLCs.

The DT architecture presented in [42] aims at enabling
the exchange of data between a remote emulation or sim-
ulation layer and the physical twin. Their six-layer DT
model extends the 5C architecture [43], which provides the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

12

Field power (kW)

=
S
<
<
o
=
<2
2
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 0 5 10 15 20 O 5 10 15 20 O 5 10 1
SPM Dayl Day?2 Day3

I
5 20 0 5

I I
10 15 20

Day7

I I I
10 15 20 O 5 10 15 20 O 5

Day5 Day6

I I
10 15 20 O 5

Day4

Fig. 10: Comparison between DT with the photovoltaic field power and with the power absorbed by the load.

guidelines for developing CPSs in manufacturing applica-
tion scenarios. In particular, layers one and two represent
devices and controllers of the physical twin. Layer three
connects elements of the lower layers using a vendor-
neutral communication interface, i.e., the Open Platform
Communications Unified Architecture (OPC UA) [44], for
retrieving and storing their data in a local repository. Layer
four represents the gateway to the IoT devices, and layer
five enables the passthrough to a cloud-based repository for
storing information of such devices. The sixth layer includes
emulation and simulation tools to analyze data stored in
the lower layers, create reports, and make decisions for
improving the performances of the physical twin processes.

Briefly, the layers three and four map to our Field layer,
the layer five to our Application layer, and the layer six
to our Control and Application layers. The proposed DT
implementation relies on a custom program for the IoT gate-
way and proprietary software for the other functionalities.

An alternative six-layer architecture for DTs to support
human decision-making and Al-driven autonomy is intro-
duced in [45]. Proceeding from bottom to top, the lowest
layer, namely the Physical, is responsible for collecting data
from the physical twin. These data are normalized and
stored by the two upper layers, i.e., Ingestion and Persis-
tence, respectively. The Inference layer provides all data
analytic functionalities, from simple formula-based calcu-
lations to machine learning algorithms. The Service level
implements interfaces to access data produced by the layers
below. It works as a gateway for the applications of the
highest level, namely the Consumption layer, responsible
for the monitoring, reporting, and interactive analytics. All
the functionalities of the above layers map to our Field
and Application layers. Moreover, the authors provide an
implementation of the DT model as a case study for fault
prediction in a production plant and rely only on open-
source software.

In [46], the authors also propose a microservices-based
approach for designing and implementing DTs of smart
manufacturing systems. Their DTF has a five-layer structure
inspired to the Reference Architecture Model for Industry
4.0 (RAMI 4.0) [5] and the Industrial Internet Reference
Architecture (IIRA) [47]]. Similarly to our Field layer, in their

37 39 [42 [45] [46 48 [50] LiDiTE
p £ & £ & -2 4
F B =7 4 £ £ £ £ £ B

N = = B=

B = = =14
A = = =S¢ = = = =17
H #% & £

TABLE 1: Comparison between DTF technologies (simula-
tion $¥, emulation £, and passthrough %)

approach lower layers acquire and aggregate data from edge
devices. Also, the highest levels integrate services for data
monitoring and analysis, which we support at the Appli-
cation layer. Finally, the authors discuss which open-source
software can be used to develop their DTF and provide an
example implementation.

The toolkit presented in [48] implements the DT model
using only open-source platforms. In particular, it leverages
Eclipse Hono [49] for integrating physical IoT devices via
passthrough and, similarly to our proposal (see 3.3), Eclipse
Ditto [8] for enabling their emulation. Moreover, the toolkit
integrates specific applications for data storage, data analyt-
ics, and visualization.

The White Label Digital Twins (WLDT) [50] is proposed
as a modular DTF. Like the previous toolkit, it can be used
for creating virtual instances that mirror IoT devices lying in
the physical counterpart. In general, WLDT can be seen as
an alternative to Ditto and it aims to ensure more efficiency
and flexibility.

6 CONCLUSION

In this paper, we introduced a novel DTF and its imple-
mentation, called LiDiTE. The distinguishing features of our
proposal are (i) the generality, flexibility and extensibility of
the DTF, which includes six abstraction layers, and (i7) an
implementation which is based on available technologies
and tools, and that has a very limited demand for computa-
tional resources. Future directions include the integration of
new technologies as well as the application to problems of
interest, e.g., in the field of Cyber Ranges.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

7

ACKNOWLEDGMENT

This work was partially funded by the Horizon 2020 project
”Strategic Programs for Advanced Research and Technology
in Europe” (SPARTA).

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

(12]

(13]

[14]
[15]

[16]

[17]

(18]
[19]
[20]
[21]

[22]

A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin:
Enabling technologies, challenges and open research,” IEEE
Access, vol. 8, pp. 108952-108971, 2020. [Online]. Available:
https://doi.org/10.1109/access.2020.2998358

L. Wright and S. Davidson, “How to tell the difference between
a model and a digital twin,” Advanced Modeling and Simulation in
Engineering Sciences, vol. 7, no. 1, Mar. 2020. [Online]. Available:
https:/ /doi.org/10.1186/s40323-020-00147-4

S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi,
“The university of genoa smart polygeneration microgrid test-bed
facility: The overall system, the technologies and the research
challenges,” Renewable and Sustainable Energy Reviews, vol. 18, pp.
442-459, 2013. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1364032112005515

T. Williams, “The purdue enterprise reference architecture and
methodology (pera),” Handbook of life cycle engineering: concepts,
models, and technologies, vol. 289, 1998.

M. Hankel and B. Rexroth, “The Reference Architectural Model
Industrie 4.0 (RAMI 4.0),” ZVEI, vol. 2, no. 2, pp. 4-9, 2015. [On-
line]. Available: https://przemysl-40.pl/wp-content/uploads/
2010-The-Reference- Architectural-Model-Industrie-40.pdf

S. Documentation, “Simulation and model-based design,” https:
/ /www.mathworks.com/products/simulink.html, 2021.

E. D. Sontag, Mathematical Control Theory: Deterministic Finite-
Dimensional Systems. Springer, 1998, ISBN: 978-1-4612-0577-7.
Eclipse Foundation, “Ditto,” https://www.eclipse.org/ditto/| ac-
cessed on July 2021.

T. R. Alves, M. Buratto, F. M. De Souza, and T. V. Rodrigues,
“Openplc: An open source alternative to automation,” in IEEE
Global Humanitarian Technology Conference (GHTC 2014). IEEE,
2014, pp. 585-589

N. Naik, “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International
Systems Engineering Symposium (ISSE). IEEE, Oct. 2017. [Online].
Available: https:/ /doi.org/10.1109/syseng.2017.8088251

R. Ramanathan, “The iec 61131-3 programming languages features
for industrial control systems,” 2014 World Automation Congress
(WAC), pp- 598-603, 2014.

A. Swales et al., “Open modbus/tcp specification,” Schneider Elec-
tric, vol. 29, pp. 3-19, 1999.

K. Curtis, “DNP3 Primer, Revision A,” https://www.dnp.org/
Portals/0/AboutUs/DNP3%20Primer%20Rev %20A.pdf, accessed
on July 2021.

OpenVPN, “OpenVPN,” https:/ /openvpn.net/, 2021.

E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-Defined Networking (SDN):
Layers and Architecture Terminology,” RFC 7426, Jan. 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc7426.txt

J. Bailey and S. Stuart, “Faucet: Deploying SDN in the enterprise,”
vol. 14, no. 5, pp. 54-68, Oct. 2016. [Online]. Available:
https://doi.org/10.1145/3012426.3015763
B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,]J. Rajahalme,
J. Gross, A. Wang,]J. Stringer, P. Shelar, K. Amidon, and
M. Casado, “The Design and Implementation of Open vSwitch,”
in 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). Oakland, CA: USENIX Association,
May 2015, pp. 117-130. [Online]. Available: https://www.usenix.
org/conference /nsdil5/technical-sessions/presentation /pfaff
OpenWrt Project, “OpenWrt,” https://openwrt.org/, 2021.
OPNsense Project, “OPNsense,” https://opnsense.org/, 2021.
International Electrotechnical Commission and others, “IEC 62443:
Industrial Communication Networks—Network and System Secu-
rity,” IEC Central Office: Geneva, Switzerland, 2010.

W. Reese, “Nginx: the high-performance web server and reverse
proxy,” Linux Journal, vol. 2008, no. 173, p. 2, 2008.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
symposium, vol. 1, no. 8. Dttawa, Dntorio, Canada, 2007, pp. 225~
230.

(23]
[24]

[25]
[26]

[27]

[28]

[29]

(30]

[31]
[32]

[33]

(34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

13

Docker, Inc, “Docker
https:/ /docs.docker.com/compose/, 2021.
S. A. White, “Introduction to bpmn,” Ibm Cooperation, vol. 2, no. 0,
p- 0, 2004.

“Camunda,” https://camunda.com/}, 2021.

S. Bracco, F. Delfino, F. Foiadelli, and M. Longo, “Smart microgrid
monitoring: Evaluation of key performance indicators for a PV
plant connected to a LV microgrid,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp.
1-6.

S. Bracco and F. Delfino, “A mathematical model for the dynamic
simulation of low size cogeneration gas turbines within smart
microgrids,” Energy, vol. 119, pp. 710-723, Jan. 2017. [Online].
Available: https:/ /doi.org/10.1016/j.energy.2016.11.033

Arpal , “Atlante climatico della Liguria,” https://www.arpal.
liguria.it/contenuti_statici/ /clima/atlante/Atlante_climatico_
della_Liguria.pdf, accessed on August 2021.

The European Commission’s science and knowledge service,
“Photovoltaic Geographical Information System (PVGIS),” https:
/ /ec.europa.eu/jrc/en/pvgis, 2021, accessed on August 2021.

F. Delfino, M. Rossi, F. Pampararo, and L. Barillari, An Energy
Management Platform for Smart Microgrids. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 207—225. [Online]. Available:
https:/ /doi.org/10.1007 /978-3-662-49179-9_10

“Scada-LTS,” http://scada-lts.org/, 2021.

Universita degli Studi di Genova, “Conto annuale del per-
sonale,” https://unige.it/trasparenza/dotazioneorganica/conto_
annuale_personale.shtml, 2020, source is in Italian. Accessed on
August 2021.

Ministero dell’Istruzione dell’Universita e della Ricerca, “Popo-
lazione studentesca dell’Universita degli Studi di Genov,” http:
/ /ustat.miur.it/dati/didattica/italia/atenei-statali/genova, 2018,
source is in Italian. Accessed on August 2021.

S. Zhan and A. Chong, “Building occupancy and energy
consumption: Case studies across building types,” Energy
and Built Environment, vol. 2, no. 2, pp. 167-174, 2021.
[Online]. Available: |https://www.sciencedirect.com/science/
article/pii/S2666123320300829

G. Longo, E. Russo, and G. Costa, “LiDiTE - SPM use case
experiment,” 2022. [Online]. Available: https://data.mendeley.
com/datasets/x3v2yhjx7c/1

F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin
in industry: State-of-the-art,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 4, pp. 2405-2415, Apr. 2019. [Online].
Available: https://doi.org/10.1109/tii.2018.2873186

N. K. Kandasamy, S. Venugopalan, T. K. Wong, and L. J. Nicholas,
“EPICTWIN: an electric power digital twin for cyber security
testing, research and education,” CoRR, vol. abs/2105.04260, 2021.
[Online]. Available: https://arxiv.org/abs/2105.04260

Open]S Foundation, “Node-red,” https://nodered.org/| accessed
on July 2021.

M. Eckhart and A. Ekelhart, “Towards security-aware virtual
environments for digital twins,” ser. CPSS "18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 61-72.
[Online]. Available: https://doi.org/10.1145/3198458.3198464

D. Antonioli and N. O. Tippenhauer, “Minicps: A toolkit
for security research on cps networks,” in Proceedings of the
First ACM Workshop on Cyber-Physical Systems-Security and/or
PrivaCy, ser. CPS-SPC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 91-100. [Online]. Available:
https:/ /doi.org/10.1145/2808705.2808715

B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: Rapid prototyping for software-defined networks,”
in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, ser. Hotnets-IX. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1868447.1868466

A. Redelinghuys, A. H. Basson, and K. Kruger, “A six-layer
architecture for the digital twin: a manufacturing case study im-
plementation,” Journal of Intelligent Manufacturing, pp. 1-20, 2019.
J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems
architecture for industry 4.0-based manufacturing systems,”
Manufacturing Letters, vol. 3, pp. 18-23, 2015. [Online].
Available: https:/ /www.sciencedirect.com/science/article/pii/
5221384631400025X

OPC Foundation, “Opc ua online reference,” https:/ /reference.
opcfoundation.org/, accessed on July 2021.

Compose,”

https://doi.org/10.1109/access.2020.2998358
https://doi.org/10.1186/s40323-020-00147-4
https://www.sciencedirect.com/science/article/pii/S1364032112005515
https://www.sciencedirect.com/science/article/pii/S1364032112005515
https://przemysl-40.pl/wp-content/uploads/2010-The-Reference-Architectural-Model-Industrie-40.pdf
https://przemysl-40.pl/wp-content/uploads/2010-The-Reference-Architectural-Model-Industrie-40.pdf
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.eclipse.org/ditto/
https://doi.org/10.1109/syseng.2017.8088251
https://www.dnp.org/Portals/0/AboutUs/DNP3%20Primer%20Rev%20A.pdf
https://www.dnp.org/Portals/0/AboutUs/DNP3%20Primer%20Rev%20A.pdf
https://rfc-editor.org/rfc/rfc7426.txt
https://doi.org/10.1145/3012426.3015763
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://camunda.com/
https://doi.org/10.1016/j.energy.2016.11.033
https://www.arpal.liguria.it/contenuti_statici//clima/atlante/Atlante_climatico_della_Liguria.pdf
https://www.arpal.liguria.it/contenuti_statici//clima/atlante/Atlante_climatico_della_Liguria.pdf
https://www.arpal.liguria.it/contenuti_statici//clima/atlante/Atlante_climatico_della_Liguria.pdf
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
https://doi.org/10.1007/978-3-662-49179-9_10
http://scada-lts.org/
https://unige.it/trasparenza/dotazioneorganica/conto_annuale_personale.shtml
https://unige.it/trasparenza/dotazioneorganica/conto_annuale_personale.shtml
http://ustat.miur.it/dati/didattica/italia/atenei-statali/genova
http://ustat.miur.it/dati/didattica/italia/atenei-statali/genova
https://www.sciencedirect.com/science/article/pii/S2666123320300829
https://www.sciencedirect.com/science/article/pii/S2666123320300829
https://data.mendeley.com/datasets/x3v2yhjx7c/1
https://data.mendeley.com/datasets/x3v2yhjx7c/1
https://doi.org/10.1109/tii.2018.2873186
https://arxiv.org/abs/2105.04260
https://nodered.org/
https://doi.org/10.1145/3198458.3198464
https://doi.org/10.1145/2808705.2808715
https://doi.org/10.1145/1868447.1868466
https://www.sciencedirect.com/science/article/pii/S221384631400025X
https://www.sciencedirect.com/science/article/pii/S221384631400025X
https://reference.opcfoundation.org/
https://reference.opcfoundation.org/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

[45]

[46]

[47]

[48]

[49]

[50]

F. Mostafa, L. Tao, and W. Yu, “An effective architecture of digital
twin system to support human decision making and ai-driven
autonomy,” Concurrency and Computation: Practice and Experience,
p- 6111, 2020.

V. Damjanovic-Behrendt and W. Behrendt, “An open source ap-
proach to the design and implementation of digital twins for
smart manufacturing,” International Journal of Computer Integrated
Manufacturing, vol. 32, no. 4-5, pp. 366-384, 2019.

Industrial Internet Consortium (IIC), “The Industrial Internet
of Things Volume GI1: Reference Architecture,” 2019. [Online].
Available: https:/ /www.iiconsortium.org/pdf/IIRA-v1.9.pdf

V. Kamath, J. Morgan, and M. L. Ali, “Industrial iot and digital
twins for a smart factory : An open source toolkit for application
design and benchmarking,” in 2020 Global Internet of Things Sum-
mit (GIoTS), 2020, pp. 1-6.

Eclipse Foundation, “Hono,” https://www.eclipse.org/hono/,
accessed on July 2021.

M. Picone, M. Mamei, and F. Zambonelli, “WIdt: A general
purpose library to build iot digital twins,” SoftwareX, vol. 13,
p- 100661, 2021. [Online]. Available: |https://www.sciencedirect.
com/science/article/pii/S2352711021000066

14

https://www.iiconsortium.org/pdf/IIRA-v1.9.pdf
https://www.eclipse.org/hono/
https://www.sciencedirect.com/science/article/pii/S2352711021000066
https://www.sciencedirect.com/science/article/pii/S2352711021000066

	1 Introduction
	2 A Reference Model for Digital Twins
	2.1 Overview
	2.2 Physical layer
	2.3 Field layer
	2.4 Network layer
	2.5 Business logic layer
	2.6 Application layer
	2.7 Human layer
	2.8 Inter-layer interactions

	3 LiDiTE
	3.1 Overview
	3.2 Physical layer
	3.3 Field layer
	3.4 Network layer
	3.5 Application layer
	3.6 Business logic and Human layers
	3.7 Inter-layer interactions

	4 LiDiTE Demo
	4.1 Use Case
	4.1.1 Power plant
	4.1.2 On field controllers
	4.1.3 Campus network
	4.1.4 Energy Management System
	4.1.5 SCADA system
	4.1.6 Campus staff and students

	4.2 Implementation
	4.2.1 Physical layer
	4.2.2 Field layer
	4.2.3 Network layer
	4.2.4 Business logic layer
	4.2.5 Application layer
	4.2.6 Human layer

	4.3 Execution and evaluation

	5 Related Work
	6 Conclusion
	7 Acknowledgment
	References

